Affiliation:
1. School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121001, China
2. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
Abstract
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various industries as a relatively inexpensive and high-performance energy conversion device. The model proposed in this article relies on a magnetic pole-biased permanent magnet synchronous reluctance motor with a magnetic focusing effect. Two types of models with Halbach array and magnetic focusing effect have been proposed, which increase excitation and make the internal magnetic circuit of the rotor more saturated, thereby achieving higher electromagnetic torque. Through finite element simulation analysis and verification, the motor characteristics of the basic and proposed permanent magnet-assisted synchronous reluctance motor were calculated, including the air gap flux density and back electromotive force (EMF) in no-load analysis, as well as the average torque, torque ripple, and efficiency in load analysis. In addition, multi-objective optimization was also conducted on the rotor topology structure of proposed model two, using the uniform Latin hypercube sampling method to uniformly sample the data samples and the Pearson correlation coefficients to perform a sensitivity analysis on the data. The pilOPT multi-objective autonomous optimization algorithm was used to perform multi-objective autonomous optimization on parameters with high correlation, and the best-found solution based on the Pareto front was selected. Compared with proposed model two, the average torque of the optimized model increased by 18.14%, the efficiency increased by 1.05% and the torque ripple decreased by 5.22%. Finally, the anti-demagnetization performance of the optimized model’s permanent magnet was analyzed.
Funder
The Start-up Funding for Newly Introduced Talents in Shenzhen
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献