Empowering Large Language Models to Leverage Domain-Specific Knowledge in E-Learning

Author:

Lu Ruei-Shan1,Lin Ching-Chang2ORCID,Tsao Hsiu-Yuan3

Affiliation:

1. Department of Management Information System, Takming University of Science and Technology, Taipei City 114, Taiwan

2. Department of Business Administration, Taipei City University of Science and Technology, Taipei City 112, Taiwan

3. Department of Marketing, National Chung Hsing University, Taichung City 402, Taiwan

Abstract

Large language models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks. However, their performance in domain-specific contexts, such as E-learning, is hindered by the lack of specific domain knowledge. This paper adopts a novel approach of retrieval augment generation to empower LLMs with domain-specific knowledge in the field of E-learning. The approach leverages external knowledge sources, such as E-learning lectures or research papers, to enhance the LLM’s understanding and generation capabilities. Experimental evaluations demonstrate the effectiveness and superiority of our approach compared to existing methods in capturing and generating E-learning-specific information.

Publisher

MDPI AG

Reference11 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2017, January 4–9). Attention is all you need. Proceedings of the Thirty-first Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2. A survey on transfer learning;Pan;IEEE Trans. Knowl. Data Eng.,2010

3. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems;VanLehn;Educ. Psychol.,2011

4. Howard, J., and Ruder, S. (2018, January 15–20). Universal language model fine-tuning for text classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia.

5. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., and Rocktäschel, T. (2020, January 6–12). Retrieval-augmented generation for knowledge-intensive NLP tasks. Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3