Mechanical and Failure Characteristics of Grouting Cemented Coal under Different Degrees of Early Damage

Author:

Jin Aibing1,Du Hailong12,Zhao Yiqing1,Wang Zhongshu1,Li Hai1

Affiliation:

1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Shanxi Jinmei Group Technology Research Institute Co., Ltd., Jincheng 048007, China

Abstract

Pre-grouting is an effective method to reinforce fractured coal in front of working faces. The mining of adjacent working faces after grouting can cause early damage to the grouting cemented coal. To explore the mechanical properties of grouting cemented coal with different degrees of early damage, we designed and built a grouting equipment that was used on fractured coal to produce grouting cemented coal. In total, 0%, 20%, 40%, and 60% of the uniaxial compressive strength of complete coal were applied to the grouting cemented coal to produce early damage. The uniaxial compressive test, digital image correlation technology (DIC), acoustic emission (AE), and scan electron microscopy (SEM) were used to explore the changes in the mechanical properties of the grouting cemented coal with different early disturbance, and the surface and internal failure modes of the samples were investigated. The results show that with an increase in the early damage degree from 0% to 60%, the strength of the grouting cemented coal samples first increased and then decreased. Moreover, when the damage degree was 40%, the strength of the grouting cemented coal reached a maximum, which increased by 24.38% compared to that of the grouting cemented coal without damage. Under the low degree of damage, the samples exhibited tensile failure. As the damage degree increases, the samples’ failure mode changes to shear and mixed failure mode, and the breakdown speed increases. Internal crack propagation mostly occurred during the failure stage. As the damage degree increased, the failure stage increased, and the grouting cemented coal exhibited plastic characteristics. However, when the early damage degree increased to 60%, the samples exhibited typical brittle failure characteristics. The microstructure results show that the low degree of early damage for the samples is conducive to the infiltration of the slurry in coal, improving the grouting reinforcement effect. A large degree of early damage can lead to internal structural damage and strength degradation in grouting cemented coal.

Funder

National Nature Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Reference34 articles.

1. Experimental study on dynamic mechanical characteristics of coal specimens considering initial damage effect of cyclic loading;Chen;J. China Coal Soc.,2023

2. Experimental study of the creep properties of coal considering initial damage;Huang;Int. J. Rock Mech. Min. Sci.,2021

3. A fractional order viscoelastic-plastic creep model for coal sample considering initial damage accumulation;Huang;Alex. Eng. J.,2021

4. Research on the Dynamic Compressive Performance of Concrete due to the Damage Static Load History;Li;Trans. Beijing Inst. Technol.,2023

5. Experimental study on acoustic emission characteristics of concrete materials with different initial defects under uniaxial compression;Li;Concrete,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3