Improved Ant Colony Algorithm for the Split Delivery Vehicle Routing Problem

Author:

Ma Xiaoxuan1ORCID,Liu Chao1

Affiliation:

1. College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

Abstract

The split delivery vehicle routing problem (SDVRP) is a classic combinatorial optimization problem, which is usually solved using a heuristic algorithm. The ant colony optimization algorithm is an excellent heuristic algorithm that has been successfully applied to solve various practical problems, and it has achieved good results. However, in the existing ant colony optimization algorithms, there are issues with weak targeting of different customer selection strategies, difficulty in balancing convergence speed and global search ability, and a predisposition to become trapped in local optima. To solve these problems, this paper proposes an improved ant colony algorithm (IACA). First, in terms of customer point selection, the initial customer and noninitial customer selection strategies are proposed for different customers, and the adaptive selection threshold is designed. Second, in terms of pheromone processing, an initial pheromone distribution method based on a greedy strategy, a pheromone backtracking mechanism, and an adaptive pheromone volatile factor are proposed. Finally, based on the 2-opt local search method, vehicle path self-search and intervehicle path search are proposed to further improve the quality of the solution. This paper tests the performance of the IACA on datasets of different scales. The experimental results show that compared with the clustering algorithm, artificial bee colony algorithm, particle swarm optimization algorithm, traditional ant colony algorithm, and other algorithms, the IACA can achieve more competitive results. Specifically, compared to the path length calculated by other algorithms, the path length calculated by IACA decreased by an average of 1.58%, 4.28%, and 3.64% in small, medium, and large-scale tests, respectively.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference53 articles.

1. What You Should Know about the Vehicle Routing Problem;Laporte;Nav. Res. Logist.,2007

2. Vehicle routing problem: Recent literature review of its variants;Sharma;Int. J. Oper. Res.,2018

3. Savings by split delivery routing;Dror;Transp. Sci.,1989

4. Complexity of the VRP and SDVRP;Archetti;Transp. Res. Part C Emerg. Technol.,2011

5. Worst-case analysis for split delivery vehicle routing problems;Archetti;Transp. Sci.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3