Solar Sail-Based Mars-Synchronous Displaced Orbits for Remote Sensing Applications

Author:

Bassetto Marco1ORCID,Quarta Alessandro A.1ORCID

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

Abstract

A solar sail is a propellantless propulsion system that allows a spacecraft to use solar radiation pressure as a propulsive source for planetary and deep space missions that would be difficult, or even unfeasible, to accomplish with more conventional thrusters, either chemical or electric. A challenging application for these fascinating propulsion systems is a heliocentric mission that requires a displaced non-Keplerian orbit (DNKO), that is, a solar sail-induced closed trajectory in which the orbital plane does not contain the Sun’s center of mass. In fact, thanks to the pioneering work of McInnes, it is known that a solar sail is able to reach and maintain a family of heliocentric DNKOs of given characteristics. The aim of this paper is to analyze the properties of Mars-synchronous circular DNKOs, which have an orbital period matching that of the planet for remote sensing applications. In fact, those specific displaced orbits allow a scientific probe to continuously observe the high-latitude regions of Mars from a quasi-stationary position relative to the planet. In this context, this paper also analyzes the optimal (i.e., the minimum-time) heliocentric transfer trajectory from the Earth to circular DNKOs in two special mission scenarios taken as a reference.

Publisher

MDPI AG

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3