FAGD-Net: Feature-Augmented Grasp Detection Network Based on Efficient Multi-Scale Attention and Fusion Mechanisms

Author:

Zhong Xungao12,Liu Xianghui1,Gong Tao1,Sun Yuan12,Hu Huosheng3ORCID,Liu Qiang4

Affiliation:

1. School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China

2. Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen 361024, China

3. School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK

4. School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Beacon House, Queens Rd, Bristol BS8 1QU, UK

Abstract

Grasping robots always confront challenges such as uncertainties in object size, orientation, and type, necessitating effective feature augmentation to improve grasping detection performance. However, many prior studies inadequately emphasize grasp-related features, resulting in suboptimal grasping performance. To address this limitation, this paper proposes a new grasping approach termed the Feature-Augmented Grasp Detection Network (FAGD-Net). The proposed network incorporates two modules designed to enhance spatial information features and multi-scale features. Firstly, we introduce the Residual Efficient Multi-Scale Attention (Res-EMA) module, which effectively adjusts the importance of feature channels while preserving precise spatial information within those channels. Additionally, we present a Feature Fusion Pyramidal Module (FFPM) that serves as an intermediary between the encoder and decoder, effectively addressing potential oversights or losses of grasp-related features as the encoder network deepens. As a result, FAGD-Net achieved advanced levels of grasping accuracy, with 98.9% and 96.5% on the Cornell and Jacquard datasets, respectively. The grasp detection model was deployed on a physical robot for real-world grasping experiments, where we conducted a series of trials in diverse scenarios. In these experiments, we randomly selected various unknown household items and adversarial objects. Remarkably, we achieved high success rates, with a 95.0% success rate for single-object household items, 93.3% for multi-object scenarios, and 91.0% for cluttered scenes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Xiamen Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3