Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction

Author:

Gui Xia12,Lu Yao1,Wang Qin1,Cai Mengdie1,Sun Song1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China

2. Anhui Water Conservancy Technical College, Hefei 231603, China

Abstract

There is increased interest in the conversion of solar energy into green chemical energy because of the depletion of fossil fuels and their unpleasant environmental effect. Photocatalytic hydrogen generation from water involves the direct conversion of solar energy into H2 fuels, which exhibits significant advantages and immense promise. Nevertheless, photocatalytic efficiency is considerably lower than the standard range of industrial applications. Low light absorption efficiency, the rapid recombination of photogenerated electrons and holes, slow surface redox reaction kinetics and low photostability are well known to be key factors negatively affecting photocatalytic hydrogen production. Therefore, to construct highly efficient and stable photocatalysts is important and necessary for the development of photocatalytic hydrogen generation technology. In this review, quantum dots (QDs)-based photocatalysts have emerged with representative achievements. Due to their excellent light-harvesting ability, low recombination efficiency of photogenerated electrons and holes, and abundant surface active sites, QDs have attracted remarkable interest as photocatalysts and/or cocatalyst for developing highly efficient photocatalysts. In this review, the application of QDs for photocatalytic H2 production is emphatically introduced. First, the special photophysical properties of QDs are briefly described. Then, recent progress into the research on QDs in photocatalytic H2 production is introduced, in three types: semiconductor QDs (e.g., CdS, CdMnS, and InP QDs), metal QDs (e.g., Au, Pt and Ag QDs), and MXene QDs and carbon QDs (CDQs). Finally, the challenges and prospects of photocatalytic H2 evolution with QDs in the future are discussed.

Funder

National Natural Science Foundation of China

Higher Education Natural Science Foundation of Anhui Province

Distinguished Young Research Project of Anhui Higher Education Institution

The University Synergy Innovation Program of Anhui Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noble-metal-free Ni(dmgH)2/CdS nanocomposite for enhanced photocatalytic H2 generation;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3