Privacy-Preserving Byzantine-Resilient Swarm Learning for E-Healthcare

Author:

Zhu Xudong1ORCID,Lai Teng1,Li Hui2ORCID

Affiliation:

1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. School of Cyber Engineering, Xidan University, Xi’an 710126, China

Abstract

An automatic medical diagnosis service based on deep learning has been introduced in e-healthcare, bringing great convenience to human life. However, due to privacy regulations, insufficient data sharing among medical centers has led to many severe challenges for automated medical diagnostic services, including diagnostic accuracy. To solve such problems, swarm learning (SL), a blockchain-based federated learning (BCFL), has been proposed. Although SL avoids single-point-of-failure attacks and offers an incentive mechanism, it still faces privacy breaches and poisoning attacks. In this paper, we propose a new privacy-preserving Byzantine-resilient swarm learning (PBSL) that is resistant to poisoning attacks while protecting data privacy. Specifically, we adopt threshold fully homomorphic encryption (TFHE) to protect data privacy and provide secure aggregation. And the cosine similarity is used to judge the malicious gradient uploaded by malicious medical centers. Through security analysis, PBSL is able to defend against a variety of known security attacks. Finally, PBSL is implemented by uniting deep learning with blockchain-based smart contract platforms. Experiments based on different datasets show that the PBSL algorithm is practical and efficient.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3