System and Method for Reducing NLOS Errors in UWB Indoor Positioning

Author:

Wang Yifan12,Zhang Di3,Li Zengke24,Lu Ming3,Zheng Yunfei3,Fang Tianye3

Affiliation:

1. Joint Laboratory of Power Remote Sensing Technology, Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China

2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

3. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

4. Key Laboratory of Resource and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The ultra-wideband (UWB) technology has been increasingly recognized as an efficacious strategy for Indoor Positioning Systems (IPSs). However, the accuracy of the UWB system can be severely degraded by non-line-of-sight (NLOS) errors. In this study, we proposed a new method to reduce the UWB positioning error in such an indoor environment. We developed a system consisting of a Robotic Total Station (RTS), four UWB base stations, a moving target (including a prism and a UWB tag), and a PC. The observed coordinates of the moving target, captured using millimeter precision from an RTS device, served as the ground truth for calculating the positioning errors of the UWB tag. In a significant NLOS scenario, the UWB’s three-dimensional positioning error was identified to exceed the nominal value declared by the manufacturer by a factor of more than three. A detailed analysis revealed that each coordinate component’s error distribution pattern demonstrated considerable variance. To reduce the NLOS error, we designed a combined multilayer neural network that simultaneously fits errors on all three coordinate components and three separate multilayer networks, each dedicated to optimizing errors on a single coordinate component. All networks were trained and verified by benchmark errors obtained from the RTS. The results showed that neural networks outperform the traditional methods, attributed to their strong nonlinear modelling ability, thereby significantly improving the external accuracy by an average reduction in RMSE by 61% and 72%. It is evident that the proposed separate networks would be more suitable for NLOS positioning problems than a combined network.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3