Nuclear Medicine Radiological Hot Laboratory Simulation: A Mixed-Method Intervention Study on Immersive Virtual Reality for Sustainable Education

Author:

Marshall Suphalak Khamruang1ORCID,Sirieak Nantakorn1,Karnkorn Pornchanok1,Keawtong Virunyupa1,Hayeeabdunromae Awatif1,Noomad Nadia1,Durawee Wanita1,Cheewakul Jongwat1

Affiliation:

1. Molecular Imaging and Cyclotron Center, Department of Radiology, Division of Nuclear Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand

Abstract

The traditional training methods in radiological hot laboratories involve significant challenges, including the risk of radiation exposure and the development of radiophobia among learners. Virtual reality (VR) presents an innovative educational solution by simulating realistic hot lab environments and procedures without associated risks. This mixed-method study investigates the efficacy of VR in enhancing cognitive retention and practical skills and reducing radiophobia among students. All participants (video and VR cohorts) were given a pre-test, same-day training post-test, after 1 month, and after 3 months. In the 3-month test, 13% of the control group scored > 80%, and 87% of the VR group scored > 80% (6.69-fold more significant). VR simulated the real-world hot lab more accurately than training videos, resulting in increased confidence and safety. Resulting in the control group (video training), radiophobia decreased by 1.52-fold; in contrast, the VR training group reduced by 2.42-fold. These reductions indicate that VR training was significantly more effective in reducing radiophobia than traditional video training. VR enhanced knowledge retention, reduced radiophobia, increased safety confidence, and reduced fear about pursuing a career in nuclear medicine. Overall, VR created a safer working environment, and RT students responded more positively than the instruction videos. Consequently, a mixed-method study revealed key codes of engagement, easy understanding, memory, safety, confidence, learning experiences, implementation in the curriculum, and getting ready for clinical practice.

Funder

Research and Development Office (RDO) at Prince of Songkla University

Faculty of Medicine, Prince of Songkla University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3