A Novel Stacking Ensemble Learning Approach for Predicting PM2.5 Levels in Dense Urban Environments Using Meteorological Variables: A Case Study in Macau

Author:

Tian Haoting1,Kong Hoiio1,Wong Chanseng2

Affiliation:

1. Faculty of Data Science, City University of Macau, Macau 999078, China

2. Macao Meteorological Society, Macau 999078, China

Abstract

Air pollution, particularly particulate matter such as PM2.5 and PM10, has become a focal point of global concern due to its significant impact on air quality and human health. Macau, as one of the most densely populated cities in the world, faces severe air quality challenges. We leveraged daily pollution data from 2015 to 2023 and hourly meteorological pollution monitoring data from 2020 to 2022 in Macau to conduct an in-depth analysis of the temporal trends of and seasonal variations in PM2.5 and PM10, as well as their relationships with meteorological factors. The findings reveal that PM10 concentrations peak during dawn and early morning, whereas PM2.5 distributions are comparatively uniform. PM concentrations significantly increase in winter and decrease in summer, with relative humidity, temperature, and sea-level atmospheric pressure identified as key meteorological determinants. To enhance prediction accuracy, a Stacking-based ensemble learning model was developed, employing LSTM and XGBoost as base learners and LightGBM as the meta-learner for predicting PM2.5 concentrations. This model outperforms traditional methods such as LSTM, CNN, RF, and XGB across multiple performance metrics.

Funder

Macau Foundation under its Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3