Graph Convolutional Spectral Clustering for Electricity Market Data Clustering

Author:

Huang Longda1,Shan Maohua1,Weng Liguo2,Meng Lingyi23

Affiliation:

1. China Electric Power Research Institute Co., Ltd., Nanjing 210003, China

2. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Department of Computer Science, University of Reading, Whiteknights, Reading RG6 6DH, UK

Abstract

As the power grid undergoes transformation and the Internet’s influence grows, the electricity market is evolving towards informatization. The expanding scale of the power grid and the increasing complexity of operating conditions have generated a substantial amount of data in the power market. The traditional power marketing model is no longer suitable for the modern power market’s development trend. To tackle this challenge, this study employs random forest and RBF models for processing electricity market data. Additionally, it explores the synergy of graph convolutional network and spectral clustering algorithms to enhance the accuracy and efficiency of data mining, enabling a comprehensive analysis of data features. The experimental results successfully extracted various electricity consumption features. This approach contributes to the informatization efforts of power grid enterprises, enhances power data perception capabilities, and offers reliable support for decision makers.

Funder

Science and Technology Project of SGCC

Publisher

MDPI AG

Reference39 articles.

1. Wang, J., Meng, K., Cao, J., Chen, Z., Gao, L., and Lin, C. (2015). A review of energy internet information technology research. Comput. Res. Dev., 117–134.

2. Energy Big Data Storage and Parallel Processing Method Based on ODPs;Ma;Proceedings of the 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy: SPIoT-2021,2022

3. Usage impact on data center electricity needs: A system dynamic forecasting model;Koot;Appl. Energy,2021

4. Analysis and Application Research of Big Data Demand for Intelligent Power Distribution;Wang;Proc. CSEE,2015

5. An internet-inspired electricity grid;Boyd;IEEE Spectr.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3