Parallel GPU-Acceleration of Metaphorless Optimization Algorithms: Application for Solving Large-Scale Nonlinear Equation Systems

Author:

Silva Bruno12ORCID,Lopes Luiz Guerreiro34ORCID,Mendonça Fábio35ORCID

Affiliation:

1. Doctoral Program in Informatics Engineering, University of Madeira, 9020-105 Funchal, Portugal

2. Regional Secretariat for Education, Science and Technology, Regional Government of Madeira, 9004-527 Funchal, Portugal

3. Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal

4. NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), 2829-516 Caparica, Portugal

5. Interactive Technologies Institute (ITI/LARSyS) and ARDITI, 9020-105 Funchal, Portugal

Abstract

Traditional population-based metaheuristic algorithms are effective in solving complex real-world problems but require careful strategy selection and parameter tuning. Metaphorless population-based optimization algorithms have gained importance due to their simplicity and efficiency. However, research on their applicability for solving large systems of nonlinear equations is still incipient. This paper presents a review and detailed description of the main metaphorless optimization algorithms, including the Jaya and enhanced Jaya (EJAYA) algorithms, the three Rao algorithms, the best-worst-play (BWP) algorithm, and the new max–min greedy interaction (MaGI) algorithm. This article presents improved GPU-based massively parallel versions of these algorithms using a more efficient parallelization strategy. In particular, a novel GPU-accelerated implementation of the MaGI algorithm is proposed. The GPU-accelerated versions of the metaphorless algorithms developed were implemented using the Julia programming language. Both high-end professional-grade GPUs and a powerful consumer-oriented GPU were used for testing, along with a set of hard, large-scale nonlinear equation system problems to gauge the speedup gains from the parallelizations. The computational experiments produced substantial speedup gains, ranging from 33.9× to 561.8×, depending on the test parameters and the GPU used for testing. This highlights the efficiency of the proposed GPU-accelerated versions of the metaphorless algorithms considered.

Funder

FCT through NOVA LINCS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3