Novel Algorithm to Detect, Classify, and Count Mussel Larvae in Seawater Samples Using Computer Vision

Author:

Orgeira-Crespo Pedro1ORCID,Gabín-Sánchez Carlos2ORCID,Aguado-Agelet Fernando3ORCID,Rey-González Guillermo1ORCID

Affiliation:

1. Aerospace Area, Department of Mechanical Engineering, Heat Engines and Machines, and Fluids, Aerospace Engineering School, University of Vigo, Campus Orense, 32004 Orense, Spain

2. Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, 36611 Pontevedra, Spain

3. Telecommunication Engineering School, University of Vigo, 36310 Vigo, Spain

Abstract

The European Union’s mussel production industry is dependent on obtaining mussel larvae as seed for cultivation, a process traditionally monitored through labor-intensive manual sampling and microscopic counting prone to human error and time-consuming procedures. To address these challenges, our research presents a computer vision-based methodology for accurately identifying, classifying, and quantifying mussel larvae individuals across various developmental stages from microscopic images of water samples. Utilizing a neural network architecture derived from the YOLO method, our approach integrates convolutional, pooling, and fully connected layers to automate detection, classification, and accounting tasks. Through training with manually labeled samples and employing data augmentation techniques, we established a robust framework capable of processing diverse larval specimens effectively. Our research not only streamlines mussel larvae monitoring processes but also underscores the potential of computer vision techniques to enhance efficiency and accuracy in aquaculture industries.

Funder

General Directorate of Fisheries, Aquaculture and Technological Innovation

European Union—FEMP

Publisher

MDPI AG

Reference37 articles.

1. (2024, April 04). Aquaculture Statistics. (n.d.). Ec.europa.eu. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Aquaculture_statistics#EU_Aquaculture.

2. Labarta, U., Fernández-Reiriz, M.J., Pérez-Camacho, A., and Pérez-Corbacho, E. (2004). Bateeiros, Mar, Mejillón. Una Perspectiva Bioeconómica, Editorial Galaxia.

3. Settlement of the mussel Mytilus galloprovincialis on collectors suspended from rafts in the Ría de Arousa (NW of Spain): Annual pattern and spatial variability;Fuentes;Aquaculture,1994

4. Growth of mussels (Mytilus edulis galloprovincialis) on cultivation rafts: Influence of seed source, cultivation site and phytoplankton availability;Labarta;Aquaculture,1995

5. Growth of seed mussel (Mytilus galloprovincialis Lmk): Effects of environmental parameters and seed origin;Babarro;J. Shellfish Res.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3