Novel Prognostic Methodology of Bootstrap Forest and Hyperbolic Tangent Boosted Neural Network for Aircraft System

Author:

Fu Shuai1ORCID,Avdelidis Nicolas P.1ORCID

Affiliation:

1. IVHM Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK

Abstract

Complex aviation systems’ integrity deteriorates over time due to operational factors; hence, the ability to forecast component remaining useful life (RUL) is vital to their optimal operation. Data-driven prognostic models are essential for system RUL prediction. These models benefit run-to-failure datasets the most. Thus, significant factors that could affect systematic integrity must be examined to quantify the operational component of RUL. To expand predictive approaches, the authors of this research developed a novel method for calculating the RUL of a group of aircraft engines using the N-CMAPSS dataset, which provides simulated degradation trajectories under real flight conditions. They offered bootstrap trees and hyperbolic tangent NtanH(3)Boost(20) neural networks as prognostic alternatives. The hyperbolic tangent boosted neural network uses damage propagation modelling based on earlier research and adds two accuracy levels. The suggested neural network architecture activates with the hyperbolic tangent function. This extension links the deterioration process to its operating history, improving degradation modelling. During validation, models accurately predicted observed flight cycles with 95–97% accuracy. We can use this work to combine prognostic approaches to extend the lifespan of critical aircraft systems and assist maintenance approaches in reducing operational and environmental hazards, all while maintaining normal operation. The proposed methodology yields promising results, making it suitable for adoption due to its relevance to prognostic difficulties.

Funder

European Commission Marie Skłodowska Curie program through the H2020 ETN MOIRA project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3