Robot Grasp Detection with Loss-Guided Collaborative Attention Mechanism and Multi-Scale Feature Fusion

Author:

Fang Haibing1,Wang Caixia12,Chen Yong1

Affiliation:

1. College of Electrical Engineering , Northwest Minzu University, Lanzhou 730030, China

2. Gansu Engineering Research Center for Eco-Environmental Intelligent Networking, Lanzhou 730030, China

Abstract

Grasp detection serves as the fundamental element for achieving successful grasping in robotic systems. The encoder–decoder structure has become widely adopted as the foundational architecture for grasp detection networks due to its inherent advantages of speed and accuracy. However, traditional network structures fail to effectively extract the essential features required for accurate grasping poses and neglect to eliminate the checkerboard artifacts caused by inversion convolution during decoding. Aiming at overcoming these challenges, we propose a novel generative grasp detection network (LGAR-Net2). A transposed convolution layer is employed to replace the bilinear interpolation layer in the decoder to remove the issue of uneven overlapping and consequently eliminate checkerboard artifacts. In addition, a loss-guided collaborative attention block (LGCA), which combines attention blocks with spatial pyramid blocks to enhance the attention to important regions of the image, is constructed to enhance the accuracy of information extraction. Validated on the Cornell public dataset using RGB images as the input, LGAR-Net2 achieves an accuracy of 97.7%, an improvement of 1.1% over the baseline network, and processes a single RGB image in just 15 ms.

Funder

Fundamental Research Funds for the Central Universities of Northwest Minzu University

Gansu Province Demonstration major of Innovation and Entrepreneurship Education for Colleges and Universities

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3