Numerical Simulation of the Solid Particle Sedimentation and Bed Formation Behaviors Using a Hybrid Method

Author:

Sheikh Md Abdur Rob,Liu XiaoxingORCID,Matsumoto Tatsuya,Morita Koji,Guo LianchengORCID,Suzuki Tohru,Kamiyama Kenji

Abstract

In the safety analysis of sodium-cooled fast reactors, numerical simulations of various thermal-hydraulic phenomena with multicomponent and multiphase flows in core disruptive accidents (CDAs) are regarded as particularly difficult. In the material relocation phase of CDAs, core debris settle down on a core support structure and/or an in-vessel retention device and form a debris bed. The bed’s shape is crucial for the subsequent relocation of the molten core and heat removal capability as well as re-criticality. In this study, a hybrid numerical simulation method, coupling the multi-fluid model of the three-dimensional fast reactor safety analysis code SIMMER-IV with the discrete element method (DEM), was applied to analyze the sedimentation and bed formation behaviors of core debris. Three-dimensional simulations were performed and compared with results obtained in a series of particle sedimentation experiments. The present simulation predicts the sedimentation behavior of mixed particles with different properties as well as homogeneous particles. The simulation results on bed shapes and particle distribution in the bed agree well with experimental measurements. They demonstrate the practicality of the present hybrid method to solid particle sedimentation and bed formation behaviors of mixed as well as homogeneous particles.

Funder

Japan Society for the Promotion of Science

Japan Atomic Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3