Abstract
This study conducts saturation modeling in a gas hydrate (GH) sand sample with X-ray CT images using the following machine learning algorithms: random forest (RF), convolutional neural network (CNN), and support vector machine (SVM). The RF yields the best prediction performance for water, gas, and GH saturation in the samples among the three methods. The CNN and SVM also exhibit sufficient performances under the restricted conditions, but require improvements to their reliability and overall prediction performance. Furthermore, the RF yields the lowest mean square error and highest correlation coefficient between the original and predicted datasets. Although the GH CT images aid in approximately understanding how fluids act in a GH sample, difficulties were encountered in accurately understanding the behavior of GH in a GH sample during the experiments owing to limited physical conditions. Therefore, the proposed saturation modeling method can aid in understanding the behavior of GH in a GH sample in real-time with the use of an appropriate machine learning method. Furthermore, highly accurate descriptions of each saturation, obtained from the proposed method, lead to an accurate resource evaluation and well-guided optimal depressurization for a target GH field production.
Funder
Korea Institute of Geoscience and Mineral Resources
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献