Evaluation of the Ignition Effect in Constant Volume Combustion Chamber Based on Matching Effect of High Voltage (MEHV) Method

Author:

Kim Kwonse,Han Jaeyoung,Im Seokyeon

Abstract

The characteristics of spark ignition with a constant volume combustion chamber (CVCC) is evaluated for the efficiency of capacitive-assisted ignition (CAI), such as spark kernel and flame growth. The conventional spark method and matching effect of high voltage (MEHV) method are evaluated to compare the spark growth distribution characteristics. To do this study, a plasma system is used and is consisted of input power, three capacitors, a transformer, high voltage cable, J-type of a spark plug, diode, and CVCC. The experiment is conducted under various operating conditions, such as 1 bar, 295 K of initial temperature, 50, 100, 150 V of ignition box, 400 V of MEHV, 0.7 ms of spark duration, and 0 kΩ of plug resistor. The results show that the spark growth at the initial voltages of 100 V and 150 V has the same characteristic, and the surface area is increased by 13 mm2 at 150 V compared to 100 V because capacitance energy stored in three capacitors is efficiently induced by the effect of dielectric breakdown and electron collision. Consequently, the spark growth of MEVH is widely distributed atmospheric more than the conventional spark, and the internal temperature of the spark kernel could be presumed to change the non-thermal plasma to thermal plasma by MEHV.

Funder

Tongmyong University of Information Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3