Dynamic-Model-Based AGC Frequency Control Simulation Method for Korean Power System
Author:
Gwon Han Na,Kook Kyung Soo
Abstract
To fulfill the need of operating power systems more effectively through diverse resources, frequency control conditions for maintaining a balance between generators and loads need to be provided accurately. As frequency control is generally achieved via the governor responses from local generators and the automatic generation control (AGC) frequency control of the central energy management system, it is important to coordinate these two mechanisms of frequency control efficiently. This paper proposes a dynamic-model-based AGC frequency control simulation method that can be designed and analyzed using the governor responses of generators, which are represented through dynamic models in the planning stage. In the proposed simulation model, the mechanism of the AGC frequency control is implemented based on the dynamic models of the power system, including governors and generators; hence, frequency responses from the governors and AGC can be sequentially simulated to coordinate and operate these two mechanisms efficiently. The effectiveness of the proposed model is verified by simulating the AGC frequency control of the Korean power system and analyzing the coordination effect of the frequency responses from the governors and AGC.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference17 articles.
1. The joint adequacy of AGC and primary frequency response in single balancing authority systems;Hector;IEEE Trans. Sustain. Energy,2015
2. Reliability Guideline: Primary Frequency Control,2015
3. Power Generation Operation and Control;Wood,1996
4. Electricity Market and Power System Operating Guide,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献