Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed

Author:

Sarbu IoanORCID,Sebarchievici CalinORCID

Abstract

Ground-coupled heat pumps (GCHPs) are an efficient thermal energy production system that can satisfy the gap between heating and air-conditioning. Be that as it may, exploratory research on GCHPs is still lacking. The first objective of this article is to describe a utilitarian energy-efficiency improvement device for a vertical GCHP system that includes a buffer tank (BT) between the heat pump unit and the fan coil units and user supply, utilizing the quantitative regulation of water flow rate with a variable-speed circulation pump. At that point, the investigative estimations are utilized to test the performances of the GCHP system in various operating modes. Fundamental efficiency parameters (coefficient of performance (COP) and CO2 emission) are achieved for one month of running utilizing two control strategies of the GCHP—standard and optimized regulation of the water pump speed—and a benchmarking of these parameters is achieved. Exploratory research has indicated higher efficiency of the system for the flow regulation solution utilizing a BT and programmed control equipment for the circulation pump speed compared with the standard regulation solution (COPsys with 7–8% higher and CO2 emission level 7.5–8% lower). The second objective is to elaborate a simulation model of the necessary heat/cold in heating and air-conditioning periods, utilizing the Transient Systems Simulation (TRNSYS) program. Finally, the simulation, acquired utilizing the TRNSYS program, is analyzed and compared with experimental information, leading to a good agreement and, along these lines, the simulation model is approved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. European Parliament Resolution of 14 March 2019 on Climate Change—A EUROPEAN Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy in Accordance with the Paris Agreement (2019/2582(RSP)) https://www.europarl.europa.eu/doceo/document/TA-8-2019-0217_EN.html

2. European Parliament Resolution of 15 January 2020 on the European Green Deal (2019/2956(RSP)) https://www.europarl.europa.eu/doceo/document/TA-9-2020-0005_EN.html

3. A review of the design aspects of ground heat exchangers

4. Ground-coupled heat pumps: Part 1 – Literature review and research challenges in modeling and optimal control

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3