Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw

Author:

Hassaan Mohamed A.ORCID,Pantaleo AntonioORCID,Santoro FrancescoORCID,Elkatory Marwa R.,De Mastro GiuseppeORCID,Sikaily Amany El,Ragab Safaa,Nemr Ahmed El

Abstract

The aim of this study was to analyze the effect of ZnO nanoparticles (ZnO NPs) on the biogas production from mechanically treated barley straw and to perform a techno-economic analysis based on the costs assessment and on the results of biogas production. The structural changes of mechanically pretreated barley straw were observed using FTIR, XRD, TGA, and SEM. Additionally, both green ZnO NPs prepared from red alga (Antithamnion plumula) extract and chemically prepared ZnO NPs were characterized by FTIR, XRD, SEM, and TEM, surface area, and EDX. The results revealed that the biogas production was slightly improved by 14.9 and 13.2% when the barley straw of 0.4 mm was mechanically pretreated with 10 mg/L of both green and chemical ZnO NPs and produced 390.5 mL biogas/g VS and 385 mL biogas/g VS, respectively. On the other hand, the higher concentrations of ZnO NPs equal to 20 mg/L had an inhibitory effect on biogas production and decreased the biogas yield to 173 mL biogas/g VS, which was less than the half of previous values. It was also clear that the mechanically treated barley straw of 0.4 mm size presented a higher biogas yield of about 340 mL/g VS, in comparison to 279 mL biogas/g VS of untreated biomass. The kinetic study showed that the first order, modified Gompertz and logistic function models had the best fit with the experimental data. The results showed that the nanoparticles (NPs) of the mechanically treated barely straw are a suitable source of biomass for biogas production, and its yields are higher than the untreated barley straw. The results of the cost-benefit analysis showed that the average levelized cost of energy (LCOE), adopting the best treatments (0.4 mm + 10 mg/L ZnO), is 0.21 €/kWh, which is not competitive with the other renewable energy systems in the Egyptian energy market.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3