Hot Deformation and Constitutive Modeling of TC21 Titanium Alloy

Author:

Yi Sheng-Xian,Yang Zhong-Jiong,Xie Huang-Xin

Abstract

Titanium alloys are extensively employed in the fabrication of various aviation structural parts, of which the most crucial processing step is hot working. In order to study the high-temperature deformation behavior of the TC21 titanium alloy, high-temperature tensile tests were performed. The results reveal that the flow stress of the material gradually decreases with an increased strain rate, and the stress increases rapidly with an increase in strain during the deformation of the alloy. Following this, flow stress gradually decreases. Flow stress decreases sharply, and the sample fractures when the appearance of necking and microvoids is observed. The Arrhenius and Radial basis function (RBF) neural network constitutive models are established in order to accurately describe the high-temperature deformation behavior of the material. In the modified Arrhenius model, strain rate indexes are expressed as a function of deformation temperature and strain rates; furthermore, the high prediction ability of the model was obtained. For the Radial basis function, the network parameters were obtained using the trial-and-error method. The established models could better forecast the flow stress of materials, and highly accurate results are obtained using the radial basis function model. The relationships between the stress index and the deformation activation energy with strain indicate that the primary deformation mechanism involves grain boundary slip and viscous slip of dislocations. The process of dynamic recrystallization primarily promotes the softening of the material.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3