The Effect of Lightweight Functional Aggregates on the Mitigation of Anode Degradation of Impressed Current Cathodic Protection for Reinforced Concrete

Author:

Guo Wenhao,Hu Jie,Yu Qijun

Abstract

The local acidification of secondary anode mortar was regarded as the primary reason for the degradation of the anode system, leading to a decreased service life and uneven distribution of the protection current within the impressed current cathodic protection system for reinforced concrete structures. In related previous studies, a novel type of lightweight functional aggregate was designed and prepared for the secondary anode mortar system, aiming to improve anode performance via acidification mitigation. However, the relationship between optimization effects and this functional component has not been fully clarified. In this study, two sets of experiments were carried out to investigate the effects of lightweight functional aggregates on acidification mitigation and the protection of current distribution. Research results proved that the presence of this functional aggregate was beneficial for mitigated acidification propagation and a more uniform distributed protection current, which demonstrated the importance and effectiveness of acidification inhibition on the optimization of anode performance.

Funder

National Natural Science Foundation of China

Guangdong International Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3