Author:
Lin Guoce,Huang Jing,Zhang Yimin,Hu Pengcheng
Abstract
The general preparation method for V2O5 is ammonium salt vanadium precipitation, which inevitably produces large amounts of ammonia nitrogen wastewater. In this paper, we propose an environmentally friendly method for preparing high-purity V2O5 with low ammonium consumption. The purity of the V2O5 product reaches more than 99% while reducing the level of ammonium consumption. The vanadium precipitation efficiency reaches 99.23% and the V2O5 purity of the product reaches 99.05% under the following conditions: precipitation time of 1.5 h, precipitation temperature of 98 °C, initial precipitation pH of 2, ammonium addition coefficient of 2, purification time of 5 min with purification performed twice, purification temperature of 65 °C. In this study, compared with the use of ammonia spirit for vanadium precipitation and ammonium salt vanadium precipitation, the ammonia consumption levels are reduced by 79.80% and 80.00%, and the purity levels are increased by 0.70% and 1.01%, respectively. The compositions of the precipitated (NaV3O8∙xH2O) and purified ((NH4)2V6O16·1.5H2O) hydrolysis products are characterized via XRD. The TGA results show that NaV3O8∙xH2O contains 1.5 times the amount of crystal water. The FTIR results explain that the two V3O8− layers are combined end-to-end to form a V6O162− layer. The change of the product image indicates that the purification process includes three stages. Firstly, heating and NH4+ attack expand the V3O8− layer. NH4+ diffuses more easily into the V3O8− layer. Secondly, NH4+ destroys the electrostatic interaction between Na+ with the V3O8− layer and replacing Na+. Finally, V3O8− is polymerized into V6O162− to keep the crystal structure stable.
Funder
Project of National Natural Science Foundation of China
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献