Hardening and Fresh State Behaviour of Ternary Cement for Marine Environments: Modification through Nanoadditives

Author:

Matanza Corro AmaiaORCID,Perlot CélineORCID,Latapie Ema,Cerveny SilvinaORCID

Abstract

The use of nanomaterials to enhance the physical and mechanical properties and durability of cement materials in their hardened state has been studied for a long time in many investigations. In comparison, fewer studies focus on nanomaterials’ influence on the fresh state when the cement reaction starts. In addition, if we consider ternary blended cement (as those used for applications in marine environments), this has been rarely studied. Severe stresses in the marine environment require high durability, which is achieved by using pozzolanic additions, to the detriment of a rapid achievement of the properties. The addition of nanomaterials could contribute to increasing the durability and also accelerating the setting of the concrete. In this work, we performed a systematic and comparative study on the influence of adding graphene oxide (GO), nanosilica (NS), and microfibrillated cellulose (MFC) during the setting mechanisms of cement (CEM V/A suitable for concrete subjected to external attacks in marine environments) blended with fly ash and slag. Cement hardening was examined through setting time and rheology within mini-slump tests. The effect of nanoadditives on the cement hydration was analysed by heat flow calorimetry to evaluate the acceleration potential. Exploring the three nanoadditives on the same formulation, we could establish that the retention of mixing water significantly decreased workability for MFC. In contrast, NS increases the hydration of cement particles, acting as nucleation nodes and promoting supplementary cement hydrates (pozzolanic reactions) and accelerating setting time. Finally, GO showed a reduction in workability. We also investigated the dosage effects on mechanical behaviour at an early age and discovered an improvement even at low GO (0.006%) and NS (3%) dosages. We have also analysed the dosage effects on mechanical behaviour at an early age.

Funder

Euroregion Nouvelle Aquitaine-Euskadi-Navarre

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3