Abstract
In this paper, theoretical models of the critical indentation depth and critical force on brittle materials using cleavage strength and contact theory are proposed. A Berkovich indenter is adopted for nanoindentation tests on a 4H-SiC single crystal sample to evaluate its mechanical behaviors. The stages of brittle material deformation (elastic, plastic, and brittle) can be characterized by the load versus indentation depth curves through the nanoindentation test. The curve of the elastic deformation stage follows the Hertz contact theory, and plastic deformation occurs at an indentation depth of up to 10 nm. The mechanism of 4H-SiC single crystal cracking is discussed, and the critical indentation depth and critical force for the plastic–brittle transition are obtained through the occurrence of the pop-in point. This shows that the theoretical results have good coherence with the test results. Both the values of the elastic modulus and hardness decrease as the crack length increases. In order to obtain more accurate mechanical property values in the nanoindentation test for brittle materials such as SiC, GaN, and sapphire, an appropriate load that avoids surface cracks should be adopted.
Funder
National Natural Science Foundation of China
Shaanxi Provincial Natural Science Foundation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献