Abstract
Curcumin has been demonstrated to have biological activities and its fortification in food products is an important strategy to deliver bioactive ingredients at target sites. However, studies have documented a curcumin low bioavailability and low intake. Hence, combining functional ingredients with food should be needed to prevent widespread nutrient intake shortfalls and associated deficiencies. Thus, curcumin was encapsulated in calcium-alginate and their characteristics as well as in vitro release behavior of curcumin hydrogel beads (CHBs) was studied. Moreover, CHBs were fortified in development of functional Kulfi and their quality characteristics were studied. The encapsulation efficiency was up to 95.04%, indicating that most of the curcumin was entrapped. FTIR shifts in the bands were due to the replacement of sodium ions to the calcium ions. In vitro release (%) for CHBs was found to be 67.15% after 2 h, which increased slightly up to 67.88% after 4 h. The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h in PBS (pH 7.40). Control and Kulfi fortified with CHBs showed no significant difference (p > 0.05) in colour (L = 73.03 and 75.88) and the melting rate (0.88 mL/min and 0.63 mL/min), respectively. Standard plate count was reduced in the Kulfi fortified with CHBs (13.77 × 104 CFU/mL) with high sensory score for overall acceptability (8.56) compared to the control (154.70 × 104 CFU/mL). These findings suggested the feasibility of developing CHBs to mask the bitterness, enhance the solubility, and increase the bioavailability in gastrointestinal conditions. Additionally, Kulfi could be a suitable dairy delivery system for curcumin bioactive compounds.
Funder
Agricultural Education Division, Indian Council of Agricultural Research, New Delhi
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献