Effect of Protein Thermal Denaturation on the Texture Profile Evolution of Beijing Roast Duck

Author:

Liu Yanxia,Wang Zhenyu,Zhang DequanORCID,Pan Teng,Liu Huan,Shen Qingwu,Hui Teng

Abstract

To investigate the mechanism of the texture formed by protein thermal denaturation, the profile and formation of texture and thermal denaturation of protein were evaluated using texture profile analysis (TPA) and transmission electron microscopy (TEM) combined with differential scanning calorimeter (DSC). Results indicated that the surface temperature of Beijing roast duck increased from 23.9 to 174.4 °C, while the center temperature rose from 20.6 to 99.3 °C during roasting. Shear force decreased significantly during the first 20 min, and the texture profile largely changed at 20 and 40 min. Firstly, Band I was broken and twisted, Band A was overstruck, and Z-line was diffused and finally disappeared, resulting in a blurred myofibril structure. The sarcomere considerably contracted within 30 min. Secondly, the main myofibrillar proteins were denatured at 20 and 40 min, respectively. The formation of hydrophobic interactions and the reduction of ionic bonds were observed. Thirdly, roasting induced protein thermal denaturation, which was correlated with interprotein forces, texture profile, and the shear force. Muscle fibers were damaged and shrunken, accompanied by the formation of hydrophobic interactions and the reduction of ionic bonds. The turning points were at 20 and 40 min, and the main proteins were denatured, leading to the formation of tenderness of Beijing roast duck.

Funder

the National Key Technologies R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3