Functional Characteristics of Aldehyde Dehydrogenase and Its Involvement in Aromatic Volatile Biosynthesis in Postharvest Banana Ripening

Author:

Ueda Yoshinori,Zhao Wei,Ihara HideshiORCID,Imahori Yoshihiro,Tsantili EleniORCID,Wendakoon Sumithra,Chambers AlanORCID,Bai JinheORCID

Abstract

Butanol vapor feeding to ripe banana pulp slices produced abundant butyl butanoate, indicating that a portion of butanol molecules was converted to butanoate/butanoyl-CoA via butanal, and further biosynthesized to ester. A similar phenomenon was observed when feeding propanol and pentanol, but was less pronounced when feeding hexanol, 2-methylpropanol and 3-methylbutanol. Enzymes which catalyze the cascade reactions, such as alcohol dehydrogenase (ADH), acetyl-CoA synthetase, and alcohol acetyl transferase, have been well documented. Aldehyde dehydrogenase (ALDH), which is presumed to play a key role in the pathway to convert aldehydes to carboxylic acids, has not been reported yet. The conversion is an oxygen-independent metabolic pathway and is enzyme-catalyzed with nicotinamide adenine dinucleotide (NAD+) as the cofactor. Crude ALDH was extracted from ripe banana pulps, and the interference from ADH was removed by two procedures: (1) washing off elutable proteins which contain 95% of ADH, but only about 40% of ALDH activity, with the remaining ALDH extracted from the pellet residues at the crude ALDH extraction stage; (2) adding an ADH inhibitor in the reaction mixture. The optimum pH of the ALDH was 8.8, and optimum phosphate buffer concentration was higher than 100 mM. High affinity of the enzyme was a straight chain of lower aldehydes except ethanal, while poor affinity was branched chain aldehydes.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3