Optimization of Multiple W1/O/W2 Emulsions Processing for Suitable Stability and Encapsulation Efficiency

Author:

Felix ManuelORCID,Guerrero AntonioORCID,Carrera-Sánchez CecilioORCID

Abstract

Double emulsions are a type of multiple emulsions, which can be defined as a multicompartmentalized system where the droplets are dispersed into the continuous phase containing other emulsions. Although double food-grade emulsions have been manufactured, there is a lack of scientific background related to the influence of different processing conditions. This work analyses the influence of processing variables in (W1/O/W2) double emulsions: passes through the valve homogenizer, pressure applied, lipophilic emulsifier concentration, the ratio between the continuous phase (W2) and the primary emulsion (W1/O), and the incorporation of xanthan gum (XG) as a stabilizer. The results obtained show that these emulsions can be obtained after selecting suitable processing conditions, making them easily scalable in industrial processes. In terms of droplet size distribution, the input of higher energy to the system (20 MPa) during emulsification processing led to emulsions with smaller droplet sizes (D3,2). However, more monodispersed emulsions were achieved when the lowest pressure (5 MPa) was used. As for the number of passes, the optimal (emulsions more monodispersed and smaller droplet sizes) was found around 2–3 passes, regardless of the valve homogenizer pressure. However, emulsions processed at 20 MPa involved lower encapsulation efficiency (EE) than emulsions processed at 5 MPa (87.3 ± 2.3 vs. 96.1 ± 1.8, respectively). The addition of XG led to more structured emulsions, and consequently, their kinetic stability increased. The results obtained indicated that a correct formulation of these W1/O/W2 double emulsions allowed the optimal encapsulation of both hydrophilic and lipophilic bioactive compounds. Thus, the development of food matrices, in the form of multiple emulsions, would allow the encapsulation of bioactive compounds, which would result in the development of novelty food products.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3