Abstract
In this article, a combination of non-destructive NIR spectroscopy and machine learning techniques was applied to predict the texture parameters and the total soluble solids content (TSS) in intact berries. The multivariate models obtained by building artificial neural networks (ANNs) and applying partial least squares (PLS) regressions showed a better prediction ability after the elimination of uninformative spectral ranges. A very good prediction was obtained for TSS and springiness (R2 0.82 and 0.72). Qualitative models were obtained for hardness and chewiness (R2 0.50 and 0.53). No satisfactory calibration model could be established between the NIR spectra and cohesiveness. Textural parameters of grape are strictly related to the berry size. Before any grape textural measurement, a time-consuming berry-sorting step is compulsory. This is the first time a complete textural analysis of intact grape berries has been performed by NIR spectroscopy without any a priori knowledge of the berry density class.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献