Abstract
A quick, simple, and reliable isocratic ultra-performance supercritical fluid chromatography-photodiode array detector (UPSFC-DAD) method was developed and validated to determine lycopene in different horticultural products. The effects of stationary phase, co-solvent, pressure, temperature, flow rate, and mobile phase additive on the separation of lycopene were evaluated. The developed method involved BEH-2EP—2.1 × 150 mm, 5 µm as the stationary phase, and CO2/MeOH 85:15 (v/v) with formic acid as the additive at 0.10% as the mobile phase. The column temperature was maintained at 45 °C, ABPR at 1800 psi, and the mobile phase’s flow rate was maintained at 1 mL/min. Under the optimized conditions, lycopene was successfully separated within 0.722 ± 0.001 min. The standard curve assayed over a range of 10 to 100 µg/mL resulted in a correlation coefficient of 0.998. The mean recoveries between 97.38% and 102.67% at different spiking levels with RSD < 2.5% were achieved. The intra and inter-day precision expressed as relative standard deviations (RSD) were found to range from 1.27% to 3.28% and from 1.57% to 4.18%, respectively. Robustness in terms of retention time (tR) and RSD were found to be 0.93 ± 0.23 min and less <2.80%, respectively. The limits of detection and quantification were 0.14 µg/mL and 0.37 µg/mL, respectively. This method was successfully applied to determine lycopene extracted from papaya, grapefruit, and bitter melon.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献