Author:
Cai Hongying,Wen Zhiguo,Xu Xin,Wang Jiaxin,Li Xuan,Meng Kun,Yang Peilong
Abstract
Lactobacillus plantarum is considered a potential probiotic supplementation for treating obesity. However, the underlying molecular mechanism is poorly understood. Our previous study displayed that L. plantarum FRT4 alleviated obesity in mice fed a high-fat diet (HFD) through ameliorating the HFD-induced gut microbiota dysbiosis. To explore the roles of FRT4 in obesity prevention, in this study, we investigated changes in serum metabolomic phenotype by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and analyzed the pathway of HFD-fed Kunming female mice orally administered with FRT4 for eight weeks. Using orthogonal partial least squares discriminant analysis (OPLS-DA), metabolite patterns with significant changes were observed. 55 metabolites including phosphatidylcholine, lysophophatidylcholine, sphingomyelin, serotonin, indole-3-methyl aceta, indole-3-carbinol, indole-5,6-quino, 11,12-DHET, prostaglandin B2, leukotriene B4, and 3-hydroxybenzoic acid were identified as potential biomarkers associated with obesity, which were mainly involving in glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. Perturbations of 14 biomarkers could be regulated by FRT4 intervention. These metabolites may serve as valuable biomarkers to understand the mechanisms by which intake of diets containing FRT4 contributes to the treatment or prevention of obesity. Thus, FRT4 can be a promising dietary supplement for the prevention of HFD-induced obesity.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献