Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions

Author:

Han Lei12,Wu Qiong3,Wu Xiaomao12

Affiliation:

1. Institute of Crop Protection, Guizhou University, Guiyang 550025, China

2. Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, China

3. Plant Protection and Plant Inspection Station of Guizhou Province, Guiyang 550001, China

Abstract

Rosa roxburghii has been widely planted in China. Powdery mildew is the most serious disease of R. roxburghii cultivation. Pyraclostrobin was widely used as a novel fungicide to control powdery mildew of R. roxburghii. To assess the safety of pyraclostrobin for use on R. roxburghii fruits, its residue rapid analysis as well as an investigation on its dissipation behaviors and terminal residues in R. roxburghii and soil under field conditions were carried out. The QuEChERS method was simplified using LC–MS/MS detection and combined with liquid–liquid extraction purification to allow determination of pyraclostrobin levels in R. roxburghii fruits and the soil. The fortified recoveries at 0.1~5.0 mg/kg were 93.48~102.48%, with the relative standard deviation of 0.64~3.21%. The limit of detection of the analytical method was 0.16 and 0.15 µg/kg for R. roxburghii fruit and soil, respectively. The effects of different spray equipment and formulations on the persistence of pyraclostrobin in R.roxburghii were as follows: gaston gasoline piggyback agricultural sprayer (5.38 d) > manual agricultural backpack sprayer (3.37 d) > knapsack multi-function electric sprayer (2.91 d), suspension concentrate (SC) (6.78 d) > wettable powder (WP) (5.64 d) > water dispersible granule (WG) (4.69 d). The degradation of pyraclostrobin followed the first-order kinetics and its half-lives in R.roxburghii and soil were 6.20~7.79 days and 3.86~5.95 days, respectively. The terminal residues of pyraclostrobin in R. roxburghii and soil were 0.169~1.236 mg/kg and 0.105~3.153 mg/kg, respectively. This study provides data for the establishment of the maximum residue limit (MRL) as well as the safe and rational use of pyraclostrobin in R. roxburghii production.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3