Abstract
Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.
Funder
Prince of Songkla University
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献