Development of a Duplex TaqMan Real-Time Polymerase Chain Reaction for Accurate Identification and Quantification of Salmonella Enteritidis from Laboratory Samples and Contaminated Chicken Eggs

Author:

Xiong Dan,Zhou Yi,Song Li,Liu Bowen,Matchawe CheleaORCID,Chen XiangORCID,Pelle RogerORCID,Jiao XinanORCID,Pan Zhiming

Abstract

Salmonella enteritidis is a major causative agent of foodborne illnesses worldwide. As the traditional serotyping and quantification methods are labor-intensive, time-consuming, and expensive, faster and more convenient molecular diagnostic methods are needed. In this study, we developed and validated a rapid duplex TaqMan real-time polymerase chain reaction (PCR) for the accurate identification and quantification of S. enteritidis. The primers and TaqMan probes were designed based on the S. enteritidis-specific gene lygD and the Salmonella genus-specific gene invA. The melt curve and gel electrophoresis analysis showed that the designed primers had potent specificity for the amplification of lygD and invA. The duplex real-time PCR specifically identified S. enteritidis from a panel of 40 Salmonella strains that represented 29 serovars and 12 non-Salmonella organisms. The duplex real-time PCR assay detected four copies of S. enteritidis DNA per reaction. The intra- and inter- assays indicated a high degree of reproducibility. The real-time PCR could accurately detect and quantify S. enteritidis in chicken organs after Salmonella infection. Furthermore, the assay identified 100% of the S. enteritidis and Salmonella genus isolates from chicken egg samples with superior sensitivity after 6 h of pre-enrichment compared to the traditional culture method. Additionally, the most-probable-number (MPN) combined with qPCR and a shortened incubation time (MPN-qPCR-SIT) method was developed for the population determination of S. enteritidis and compared with various enumeration methods. Thus, we have established and validated a new duplex real-time PCR assay and MPN-qPCR-SIT method for the accurate detection and quantification of S. enteritidis, which could contribute to meeting the need for fast detection and identification in prevention and control measures for food safety.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3