Effects of Pyridoxine Deficiency on Hippocampal Function and Its Possible Association with V-Type Proton ATPase Subunit B2 and Heat Shock Cognate Protein 70

Author:

Jung Hyo Young,Kim Woosuk,Hahn Kyu Ri,Kwon Hyun Jung,Nam Sung Min,Chung Jin Young,Yoon Yeo Sung,Kim Dae Won,Yoo Dae YoungORCID,Hwang In KooORCID

Abstract

Pyridoxine, one of the vitamin B6 vitamers, plays a crucial role in amino acid metabolism and synthesis of monoamines as a cofactor. In the present study, we observed the effects of pyridoxine deficiency on novel object recognition memory. In addition, we examined the levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenethylamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid and the number of proliferating cells and neuroblasts in the hippocampus. We also examined the effects of pyridoxine deficiency on protein profiles applying a proteomic study. Five-week-old mice fed pyridoxine-deficient diets for 8 weeks and showed a significant decrease in the serum and brain (cerebral cortex, hippocampus, and thalamus) levels of pyridoxal 5′-phosphate, a catalytically active form of vitamin-B6, and decline in 5-HT and DA levels in the hippocampus compared to controls fed a normal chow. In addition, pyridoxine deficiency significantly decreased Ki67-positive proliferating cells and differentiated neuroblasts in the dentate gyrus compared to controls. A proteomic study demonstrated that a total of 41 spots were increased or decreased more than two-fold. Among the detected proteins, V-type proton ATPase subunit B2 (ATP6V1B2) and heat shock cognate protein 70 (HSC70) showed coverage and matching peptide scores. Validation by Western blot analysis showed that ATP6V1B2 and HSC70 levels were significantly decreased and increased, respectively, in pyridoxine-deficient mice compared to controls. These results suggest that pyridoxine is an important element of novel object recognition memory, monoamine levels, and hippocampal neurogenesis. Pyridoxine deficiency causes cognitive impairments and reduction in 5-HT and DA levels, which may be associated with a reduction of ATP6V1B2 and elevation of HSC70 levels in the hippocampus.

Funder

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3