Multiscale Entropy Analysis of the Differential RR Interval Time Series Signal and Its Application in Detecting Congestive Heart Failure

Author:

Liu ChengyuORCID,Gao Rui

Abstract

Cardiovascular systems essentially have multiscale control mechanisms. Multiscale entropy (MSE) analysis permits the dynamic characterization of the cardiovascular time series for both short-term and long-term processes, and thus can be more illuminating. The traditional MSE analysis for heart rate variability (HRV) is performed on the original RR interval time series (named as MSE_RR). In this study, we proposed an MSE analysis for the differential RR interval time series signal, named as MSE_dRR. The motivation of using the differential RR interval time series signal is that this signal has a direct link with the inherent non-linear property of electrical rhythm of the heart. The effectiveness of the MSE_RR and MSE_dRR were tested and compared on the long-term MIT-Boston’s Beth Israel Hospital (MIT-BIH) 54 normal sinus rhythm (NSR) and 29 congestive heart failure (CHF) RR interval recordings, aiming to explore which one is better for distinguishing the CHF patients from the NSR subjects. Four RR interval length for analysis were used ( N = 500 , N = 1000 , N = 2000 and N = 5000 ). The results showed that MSE_RR did not report significant differences between the NSR and CHF groups at several scales for each RR segment length type (Scales 7, 8 and 10 for N = 500 , Scales 3 and 10 for N = 1000 , Scales 2 and 3 for both N = 2000 and N = 5000 ). However, the new MSE_dRR gave significant separation for the two groups for all RR segment length types except N = 500 at Scales 9 and 10. The area under curve (AUC) values from the receiver operating characteristic (ROC) curve were used to further quantify the performances. The mean AUC of the new MSE_dRR from Scales 1–10 are 79.5%, 83.1%, 83.5% and 83.1% for N = 500 , N = 1000 , N = 2000 and N = 5000 , respectively, whereas the mean AUC of MSE_RR are only 68.6%, 69.8%, 69.6% and 67.1%, respectively. The five-fold cross validation support vector machine (SVM) classifier reports the classification Accuracy ( A c c ) of MSE_RR as 73.5%, 75.9% and 74.6% for N = 1000 , N = 2000 and N = 5000 , respectively, while for the new MSE_dRR analysis accuracy was 85.5%, 85.6% and 85.6%. Different biosignal editing methods (direct deletion and interpolation) did not change the analytical results. In summary, this study demonstrated that compared with MSE_RR, MSE_dRR reports better statistical stability and better discrimination ability for the NSR and CHF groups.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3