Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm

Author:

Hernandez Concepcion1,Lara Jorge1ORCID,Arjona Marco A.1,Melgoza-Vazquez Enrique2ORCID

Affiliation:

1. La Laguna Institute of Technology, National Technological Institute of Mexico, Torreon 27000, Coahuila, Mexico

2. Morelia Institute of Technology, National Technological Institute of Mexico, Morelia 58117, Michoacan, Mexico

Abstract

This paper presents a multi-objective design optimization of a power transformer to find the optimal geometry of its core and the low- and high-voltage windings, representing the minimum power losses and the minimum core and copper weights. The optimal design is important because it allows manufacturers to build more efficient and economical transformers. The approach employs a manufacturer’s design methodology, which is based on the usage of the laws of physics and leads to an analytical transformer model with the advantage of requiring a low amount of computing time. Afterward, the multi-objective design optimization is defined along with its constraints, and they are solved using the Non-Sorting Genetic Algorithm III (NSGA-III), which finds a set of optimal solutions. Once an optimal solution is selected from the Pareto front, it is necessary to fine-tune it with the 3D Finite Element Analysis (FEA). To avoid the large computing times needed to carry out the 3D Finite Element (FE) model simulations used in multi-objective design optimization, Response Surface Methodology (RSM) polynomial models are developed using 3D FE model transformer simulations. Finally, a second multi-objective design optimization is carried out using the developed RSM empirical models that represent the cost functions and is solved using the NSGA-III. The numerical results of the optimal core and windings geometries demonstrate the validity of the proposed design methodology based on the NSGA-III. The used global optimizer has the feature of solving optimization problems with many cost functions, but it has not been applied to the design of transformers. The results obtained in this paper demonstrate better performance and accuracy with respect to the commonly used NSGA-II.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3