Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong

Author:

Wang Ran1,Ci Hui1,Zhang Ting2,Tang Yuxin1,Wei Jinyuan1,Yang Hui1ORCID,Feng Gefei34,Yan Zhaojin1ORCID

Affiliation:

1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

2. School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China

3. School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China

4. Key Laboratory of Language and Cognitive Neuroscience of Jiangsu Province, Collaborative Innovation Center for Language Ability, Xuzhou 221009, China

Abstract

Industry is widely valued as an important contributor to carbon emissions. Therefore, it is of great significance to analyze the industrial carbon emissions (ICE) in Guangdong, the strongest industrial province in China. We have adopted the carbon emission accounting model and standard deviational ellipse analysis model to analyze the temporal and spatial characteristics and evolution trends of the industry carbon emission amount and intensity in Guangdong from 1998 to 2013. The study results include: (1) Due to the rapid development of industry, Guangdong’s ICE showed a steady growth trend; (2) The distribution characteristics of ICE were characterized by the trend of taking the Pearl River Delta (PRD) region as the center and gradually spreading to the surrounding areas. From the perspective of industrial sectors, it can be divided into steady growth type, fluctuant growth type, basically stable type, and decrease type; (3) The spatial pattern of the ICE in Guangdong is basically the same as that of the total industrial output value, that is, the southwest-northeast pattern. This work is helpful for China’s carbon peak, especially for the formulation of industrial carbon peak policy and the sustainable development of the environment.

Funder

the Xinjiang Uygur Autonomous Region Key Research and Development Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3