Fatigue Reliability Based on Predicted Posterior Stress Ranges Determined from Strain Measurements of Wind Turbine Support Structures

Author:

Kinne Marko1,Thöns Sebastian12ORCID

Affiliation:

1. Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany

2. Division of Structural Engineering, Lund University, 22100 Lund, Sweden

Abstract

In the present paper, an approach for updating the continuous stress range distribution of a welded connection of a wind turbine support structure with predicted information from strain measurements is presented. Environmental conditions, such as wind or, in offshore fields, waves and currents, in combination with rotor excitations generate cyclic stresses affecting the reliability of welded joints of the support structure over the service life. Using strain measurements, these conditions can be monitored, and the resulting stress ranges, under consideration of measurement, mechanical and material uncertainties, can be reconstructed. These stress ranges can be used as an input for updating the prior probability density function (PDF) of the stress ranges predicted by the overall dynamics and a detailed design analysis. Applying Bayesian probability theory and decision theoretical implications, the predicted posterior probability density of the stress ranges is calculated based on the design information and uncertainties. This approach is exemplified, and it is shown how the predicted stress ranges and the design stress ranges are distributed. The prior and the predicted posterior stress ranges are used for a reliability calculation for potentially entering a pre-posterior decision analysis.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3