Smart Protection System for Microgrids with Grid-Connected and Islanded Capabilities Based on an Adaptive Algorithm

Author:

Sampaio Felipe Carvalho1,Tofoli Fernando Lessa2ORCID,Melo Lucas Silveira1,Barroso Giovanni Cordeiro3,Sampaio Raimundo Furtado1,Leão Ruth Pastôra Saraiva1ORCID

Affiliation:

1. Department of Electrical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil

2. Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei 36307-352, Brazil

3. Department of Physics, Federal University of Ceará, Fortaleza 60455-760, Brazil

Abstract

This work proposes a smart protection system for microgrids, which relies on an adaptive metaheuristic for the automatic calculation of optimal settings for directional overcurrent relays (DOCRs). The adaptive fuzzy directional bat algorithm (AFDBA) associated with a fuzzy inference system (FIS) is used for this purpose. A prominent advantage of this solution is that there is no need for an initial tuning of the parameters associated with the algorithm, unlike many traditional approaches reported in the literature. Such a metaheuristic is used in the conception of an adaptive protection system (APS) in the context of a microgrid while taking into account the connection status of distributed generation (DG) units under distinct scenarios. A performance comparison with a protection system with fixed optimal settings (PSFOS) is also presented. The results demonstrate that the proposed APS outperforms the PSFOS while providing faster response, higher reliability and less susceptibility to miscoordination. In other words, it presents a shorter trip time when compared with the PSFOS, with a reduction of 6.83% and 26.58% when considering the DG penetration and the islanded microgrid, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3