3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration

Author:

Zhao Jianwei1,Zeng Zhaofa1,Zhou Shuai1,Yan Jiahe1ORCID,An Baizhou12

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University, 938 Ximinzhu Street, Changchun 130026, China

2. Ningxia Geophysical and Geochemical Exploration Institute (Autonomous Regional Deep Earth Exploration Center), Yinchuan 750001, China

Abstract

The Gonghe Basin is one of the most important regions for the exploration and development of hot dry rock geothermal resources in China. However, there is still some controversy about the main heat source of hot dry rock geothermal resources in the Gonghe Basin. Combined with previous research results including three-dimensional magnetotelluric imaging and linear inversion of Rayleigh wave group and phase velocity result, we obtained a high-resolution underground spatial density distribution model of the Gonghe Basin based on satellite gravity data by using 3-D gravity focusing inversion method. According to the results, there are widely distributed low density anomalies relative to surrounding rock in the middle crust of the study area. The low-density layer is speculated to be a low-velocity, high-conductivity partial melting layer in the crust of the Gonghe Basin. The inversion result confirms for the first time the existence of a partial melt layer from the gravity point of view, and this high temperature melt layer may be the main heat source of the hot dry rock geothermal resources in the Gonghe Basin. It can provide a new basis for further research on the genesis of the hot dry rock geothermal system in the Gonghe Basin.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Interdisciplinary training Program for Young teachers and students of Jilin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3