Asymmetric Interseismic Strain across the Western Altyn Tagh Fault from InSAR

Author:

Liu YunhuaORCID,Zhao DezhengORCID,Shan Xinjian

Abstract

As the northern boundary of the Tibetan Plateau, the long Altyn Tagh fault (ATF) controls the regional tectonic environment, and the study of its long-term fault slip rate is key to understanding the tectonic evolution and deformation of the northern Tibetan Plateau. In this paper, we measure the fault slip rate of the western segment of the ATF using InSAR observations between 2015 to 2020. The Multi-Temporal Interferometric InSAR analysis is applied to obtain the two-dimensional fault-parallel and vertical displacement fields. The spatially dense InSAR observations clearly illustrate the asymmetrical pattern of displacement fields across the fault. Constrained by our InSAR observations, the fault slip rate and locking depth of the western segment of the ATF are inverted using four different models in a Bayesian framework. The two-layer viscoelastic model incorporating lateral heterogeneity of rheology in the lower crust indicates that the fault slip rate of the western ATF is estimated to be 9.8 ± 1.1 mm/yr (at 83.8°E across the ATF) and 8.6 ± 1.1 mm/yr (at 85.1°E), respectively, and the locking depth is 15.8 ± 4.3 km and 14.8 ± 4.9 km. Our new estimates generally agree with the previous estimates of fault slip rate constrained by GPS observations. We conclude that the contrast between the thickness of the elastic layer and the shear modulus of the Tibetan plateau and the Tarim basin jointly contribute to the asymmetric interseismic strain accumulation on the ATF.

Funder

National Natural Science Foundation of China

the National Key Technologies R&D Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3