Characterizing Spatiotemporal Variations in the Urban Thermal Environment Related to Land Cover Changes in Karachi, Pakistan, from 2000 to 2020

Author:

Baqa Muhammad FahadORCID,Lu LinlinORCID,Chen Fang,Nawaz-ul-Huda SyedORCID,Pan LuyangORCID,Tariq AqilORCID,Qureshi SalmanORCID,Li Bin,Li Qingting

Abstract

Understanding the spatiotemporal patterns of urban heat islands and the factors that influence this phenomenon can help to alleviate the heat stress exacerbated by urban warming and strengthen heat-related urban resilience, thereby contributing to the achievement of the United Nations Sustainable Development Goals. The association between surface urban heat island (SUHI) effects and land use/land cover features has been studied extensively, but the situation in tropical cities is not well-understood due to the lack of consistent data. This study aimed to explore land use/land cover (LULC) changes and their impact on the urban thermal environment in a tropical megacity—Karachi, Pakistan. Land cover maps were produced, and the land surface temperature (LST) was estimated using Landsat images from five different years over the period 2000–2020. The surface urban heat island intensity (SUHII) was then quantified based on the LST data. Statistical analyses, including geographically weighted regression (GWR) and correlation analyses, were performed in order to analyze the relationship between the land cover composition and LST. The results indicated that the built-up area of Karachi increased from 97.6 km² to 325.33 km² during the period 2000–2020. Among the different land cover types, the areas classified as built-up or bare land exhibited the highest LST, and a change from vegetation to bare land led to an increase in LST. The correlation analysis indicated that the correlation coefficients between the normalized difference built-up index (NDBI) and LST ranged from 0.14 to 0.18 between 2000 and 2020 and that NDBI plays a dominant role in influencing the LST. The GWR analysis revealed the spatial variation in the association between the land cover composition and the SUHII. Parks with large areas of medium- and high-density vegetation play a significant role in regulating the thermal environment, whereas the scattered vegetation patches in the urban core do not have a significant relationship with the LST. These findings can be used to inform adaptive land use planning that aims to mitigate the effects of the UHI and aid efforts to achieve sustainable urban growth.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3