NNetEn2D: Two-Dimensional Neural Network Entropy in Remote Sensing Imagery and Geophysical Mapping

Author:

Velichko AndreiORCID,Wagner Matthias P.,Taravat Alireza,Hobbs Bruce,Ord Alison

Abstract

Measuring the predictability and complexity of 2D data (image) series using entropy is an essential tool for evaluation of systems’ irregularity and complexity in remote sensing and geophysical mapping. However, the existing methods have some drawbacks related to their strong dependence on method parameters and image rotation. To overcome these difficulties, this study proposes a new method for estimating two-dimensional neural network entropy (NNetEn2D) for evaluating the regularity or predictability of images using the LogNNet neural network model. The method is based on an algorithm for converting a 2D kernel into a 1D data series followed by NNetEn2D calculation. An artificial test image was created for the study. We demonstrate the advantage of using circular instead of square kernels through comparison of the invariance of the NNetEn2D distribution after image rotation. Highest robustness was observed for circular kernels with a radius of R = 5 and R = 6 pixels, with a NNetEn2D calculation error of no more than 10%, comparable to the distortion of the initial 2D data. The NNetEn2D entropy calculation method has two main geometric parameters (kernel radius and its displacement step), as well as two neural network hyperparameters (number of training epochs and one of six reservoir filling techniques). We evaluated our method on both remote sensing and geophysical mapping images. Remote sensing imagery (Sentinel-2) shows that brightness of the image does not affect results, which helps keep a rather consistent appearance of entropy maps over time without saturation effects being observed. Surfaces with little texture, such as water bodies, have low NNetEn2D values, while urban areas have consistently high values. Application to geophysical mapping of rocks to the northwest of southwest Australia is characterized by low to medium entropy and highlights aspects of the geology. These results indicate the success of NNetEn2D in providing meaningful entropy information for 2D in remote sensing and geophysical applications.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3