A DEM Super-Resolution Reconstruction Network Combining Internal and External Learning

Author:

Lin XuORCID,Zhang Qingqing,Wang Hongyue,Yao Chaolong,Chen Changxin,Cheng Lin,Li Zhaoxiong

Abstract

The study of digital elevation model (DEM) super-resolution reconstruction algorithms has solved the problem of the need for high-resolution DEMs. However, the DEM super-resolution reconstruction algorithm itself is an inverse problem, and making full use of the DEM a priori information is an effective way to solve this problem. In our work, a new DEM super-resolution reconstruction method is proposed based on the complementary relationship between internally learned super-resolution reconstruction methods and externally learned super-resolution reconstruction methods. The method is based on the presence of a large amount of repetitive information within the DEM. Using an internal learning approach to learn the internal prior of the DEM, a low-resolution dataset of the DEM rich in detailed features is generated, and based on this, the training of a constrained external learning network is constructed for the discrepancy data pair. Finally, it introduces residual learning based on the network model to accelerate the operation rate of the network and to solve the model degradation problem brought about by the deepening of the network. This enables the better transfer of learned detailed features in deeper network mappings, which in turn ensures accurate learning of the DEM prior information. The network utilizes the internal prior of the specific DEM as well as the external prior of the DEM dataset and achieves better super-resolution reconstruction results in the experimental results. The results of super-resolution reconstruction by the Bicubic method, Super-Resolution Convolutional Neural Networks (SRCNN), very deep convolutional networks (VDSR), ”Zero-Shot” Super-Resolution networks (ZSSR) and the new method in this paper were compared, and the average RMSE of the super-resolution reconstruction results of the five methods were 8.48 m, 8.30 m, 8.09 m, 7.02 m and 6.65 m, respectively. The mean elevation error at the same resolution is 21.6% better than that of the Bicubic method, 19.9% better than that of the SRCNN, 17.8% better than that of the VDSR method, and 5.3% better than that of the ZSSR method.

Funder

National Natural Science Foundation of China

Sichuan Provincial Science and Technology Department Project

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Impact of terrain slope and aspect on radargrammetric DEM accuracy

2. Research Ondem Fusion Blending Multisource and Multi-Scale Elevation Data;Yue,2017

3. Airborne LiDAR for DEM generation: Some critical issues;Liu;Prog. Phys. Geogr. Earth Environ.,2008

4. Global High-Resolution with Sparse Digital Elevation Model Research Progress and Prospects;Li;Geomat. Inf. Sci. Wuhan Univ.,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3