Characterising the Land Surface Phenology of Middle Eastern Countries Using Moderate Resolution Landsat Data

Author:

Qader Sarchil Hama,Priyatikanto RhoromORCID,Khwarahm Nabaz R.ORCID,Tatem Andrew J.,Dash Jadunandan

Abstract

Global change impacts including climate change, increased CO2 and nitrogen deposition can be determined through a more precise characterisation of Land Surface Phenology (LSP) parameters. In addition, accurate estimation of LSP dates is being increasingly used in applications such as mapping vegetation types, yield forecasting, and irrigation management. However, there has not been any attempt to characterise Middle East vegetation phenology at the fine spatial resolution appropriate for such applications. Remote-sensing based approaches have proved to be a useful tool in such regions since access is restricted in some areas due to security issues and their inter-annual vegetation phenology parameters vary considerably because of high uncertainty in rainfall. This study aims to establish for the first time a comprehensive characterisation of the vegetation phenological characteristics of the major vegetation types in the Middle East at a fine spatial resolution of 30 m using Landsat Normalized Difference Vegetation Index (NDVI) time series data over a temporal range of 20 years (2000–2020). Overall, a progressive pattern in phenophases was observed from low to high latitude. The earliest start of the season was concentrated in the central and east of the region associated mainly with grassland and cultivated land, while the significantly delayed end of the season was mainly distributed in northern Turkey and Iran corresponding to the forest, resulting in the prolonged length of the season in the study area. There was a significant positive correlation between LSP parameters and latitude, which indicates a delay in the start of the season of 4.83 days (R2 = 0.86, p < 0.001) and a delay in the end of the season of 6.54 days (R2 = 0.83, p < 0.001) per degree of latitude increase. In addition, we have discussed the advantages of fine resolution LSP parameters over the available coarse datasets and showed how such outputs can improve many applications in the region. This study shows the potential of Landsat data to quantify the LSP of major land cover types in heterogeneous landscapes of the Middle East which enhances our understanding of the spatial-temporal dynamics of vegetation dynamics in arid and semi-arid settings in the world.

Funder

UK Research and Innovation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3