R-IMNet: Spatial-Temporal Evolution Analysis of Resource-Exhausted Urban Land Based on Residual-Intelligent Module Network

Author:

Wang ChunyangORCID,Zhang Yingjie,Wu Xifang,Yang WeiORCID,Qiang Haiyang,Lu Bibo,Wang JianlongORCID

Abstract

The transformation of resource-exhausted urban land is an urgent problem for sustainable urban development in the world today. Obtaining the urban land use type and analyzing the changes in their land use can lead to better management of the relationship between economic development and resource utilization. In this paper, a residual-intelligent module network was proposed to solve the problems of low classification accuracy and missing objects edge information in traditional computer classification methods. The classification of four Landsat-TM/OLI images from 1993–2020 for Jiaozuo city (the first batch of resource-exhausted cities in China) was realized by this method. The results (overall accuracy was 98.61%, in 2020 images) were better than the comparison models (support vector machine, 2D-convolutional neural network, hybrid convolution networks; overall accuracy was 87.12%, 96.16%, 98.46%, respectively) and effectively reduced the loss of information on the edge of the ground objects. On this basis, six main land use types were constructed by combining field surveys and other methods. The characteristics and driving forces of spatial-temporal change in land use were explored from the aspect of social, economic and policy factors. The results showed that from 1993 to 2020 the cultivated land, forest land, water body and other land types in the study area decreased by 690.97 km2, 57.54 km2, 47.04 km2 and 59.43 km2, respectively. The construction land and bare land increased by 839.38 km2 and 15.57 km2, respectively. The transfer of land use types was mainly from cultivated land to construction land, with a cumulative conversion of 920.95 km2 within 27 years. The driving forces of land use in the study area were analyzed by principal component analysis (PCA) and regression analysis. The spatial-temporal evolution of land use types was affected by policy changes, the level of social development and the adjustment in the economy, industry and agriculture structure. The investment in fixed assets and per capita net income in rural areas were the top two influencing factors and their cumulative contribution rate was 94.62%. The findings of this study can provide scientific reference and theoretical support for land use planning, land reclamation in mining areas, ecological protection and sustainable development in Jiaozuo and other resource-exhausted cities in the world.

Funder

Henan Provincial Science and Technology Research Project;Japan Society for the Promotion of Science (JSPS) KAKENHI Grant;Henan Polytechnic University Doctoral Fund Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3